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Mouse RetSat catalyzes the saturation of the-6284 double @,\)\A) o ReSal W"‘/\W
~ - E ]

bond of alltransretinol to produce altrans-13,14-dihydroretinol all-trans-ROL

8! (Figure 1). A related enzyme in zebrafish catalyzes the saturationﬁ P A _ SN
of the C7-C8 double bond in addition to the C+&14 double ~ 2 = "% ™~y 2 o
bond of alltransretinol to produce both8 and alltrans7,8- E— E

dihydroretinol? Further oxidation of8 and of alltrans7,8- S HeKmResat | I e /.\/\
dihydroretinol by retinol dehydrogenases and then by retinaldehyde& ™ &

dehydrogenase enzymes leads to formation ofratis13,14- g HEKmeisal + /\ % HEK-mRetSat + /\
dihydroretinoic acid® and alltrans-7,8-dihydroretinoic acid, com- 5 : 5 °]

pounds whose levels are exquisitely controlled in vivo by the 2 e + (S48 /\/\ 2 lver + (R4 /\
enzymes that catalyze their synthesis and breakdéwuth 9 and ¢ : - . * T - M
all-trans-7,8-dihydroretinoic acid are highly selective agonists in Time (min) Time (min)

activating the retinoic acid receptor (RAR) but not the retinoid X Figure 1. Chiral HPLC analysis of compouriproduct of mouse RetSat

receptor (RXR}# Because 13,14-dihydroretinoids are chiral com- and of compoun@ purified from mouse liver in comparison with synthetic

pounds it is important to determine their absolute configuration and (F) and ©-8 standards. Compounds were analyzed separately or in
| h h i . . th bindi combination as indicated. Blue line chromatograms depict the chiral HPLC

eva u_ate ow the different enantlomgrs |nteract_ wit .blndlng analysis of the synthetic standards.

proteins, receptors, and enzymes. In this study we investigated the

absolute configuration of biologically derivédland consequently ~ Scheme 1. Preparation of (R)-All-trans-13,14-dihydroretinol,

of 9 and evaluated the activation of RAR by the enantiome& of (R)-8 o

To establish the absolute configuration ®fve examined the 0-g g
products of mouse and zebrafish RetSat by chiral HPLC. We also S
examined the endogenous form of compo8mrified from livers S e G o 5,
of mice gavaged with affransretinyl palmitate. For our analyses N \ N . oo s ’

by chiral HPLC we established authentic standards by stereospecific
syntheses of the two enantiomers8fScheme 1 and Supporting

s Va
Information Scheme S-2). The synthetic scheme leading to the ‘ o
biological material R)-all-trans-13,14-dihydroretinol )-8 is de- OIS NONNAR
picted in Scheme 1. The chirality was transferred from that of the >%’° .
y-alkoxy group in (£)-4,5-(O-isopropylidene)pent-2-enoate enan- (RIT, R=CO,Et je
tiomer (49-1,5 and Suzuki coupling was selected as the connective (Ry8, R=CHOH =<
method to construct the polyene skeletakn analogous sequence @ Reagents and reaction conditions: (a) MeLi, THF;8°C. (b) HIOs,
produced §-all-trans-13,14-dihydroretino§-8 from (4R)-4,5-O- 1:1 THF/ELO, 25°C, 14 h, 68%. (c) CrGl THF, 2-(dichloromethyl)-

. . S 4,4,5,5-tetramethyl-1,3,2-dioxaborolabd.il, 25 °C, 14 h, 68%. (d) lodide
isopropylidene)pent-2-enoateR$1. Determination of the enan- 6, Pd(PPh)a, THF),/ 10% aq TIOH, 25C, 2 h, 55%. (e) DIBALSH), THF,

tiomeric excess of the target compounds was based on HPLC—7g°c, 2 h, 73%.
separation by a Chiracel OD-H 0.46 csn 15 cm column that
afforded an enantiomeric excess (ee) value>®6% for each

enantiomer oB. (Figure 1 and Figure S-1). Therefore, both mouse and zebrafish

We analyzed compound purified from previously described ~ RetSat have the same stereospecificity at the €1B4 double
human embryonic kidney cells (HEK) 293 cells that express mouse Pond. We also examined the endogenous form of compdind
or zebrafish RetSat (HEK-mRetSat and HEK-zRetSat, respec-Purified from the livers of mice gavaged with atensretinyl
tively).12 This analysis showed that both mouse and zebrafish RetSatP@/mitate. Chiral HPLC analysis of compoudfound in vivo
produce theR)-8 enantiomer as it had chromatographic properties ndicates it is predominantiyR)-8 (Figure 1). A smaller peak that

on chiral HPLC identical to synthetidl}-8 but distinct from §)-8 co-migrates with §-8 may represent a racemization product of
- — (R)-8 or a saturation product of allansretinol that occurs by a
: Sﬁisveer"s\’iggbeé”ds%sigg‘fe University. pathway independent of RetSat (Figure 1, marked by asterisk). We
§ University of Pennsylvania School of Medicine. employed a second chromatographic chiral separation method by
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stained with Oil Red-O as well as by the expression of adipocytic
p—————— markers FABP4 and PPAR(Figure 2, parts C and D). The
i inhibition of adipogenesis by a racemic mixture8afan be relieved
T by the addition of AGN193618, a specific antagonist of RAR.
Therefore 8 inhibits adipogenesis through activation of RAR. The
human RAR ligand binding pocket can discriminate between the
N Inl Ijl - active agonist BMS270394 and its inactive enantiomer BMS278395.
00 108 w0 b T On the basis of the crystal structure of RABound to each
Concentration (M) Concentration (M) . . .
enantiomer, this selectivity was proposed to result from the
unfavorable contacts between the ligand and the ligand binding
pocket. In the case of th&®) and ) enantiomers 09 we believe
a similar mechanism may occur whe®-9 interacts unfavorably
: i) with several residues, that may include those that interact with
all-trans-ROL (RIS}8 + + carboxylate (Figure S-5). Further crystallographic studies could shed
(RyB + AGN193518 + . N . . .
(518 + light on the interactions of theRj and © enantiomers 0f with
D RAR.
- — FABP4 ——— We present data that establishes the stereospecificity of RetSat
- = PPARY = and the absolute configuration of its product &-8. The R)
configuration renders dihydroretinoids weaker agonists of RAR than
the (9 enantiomers. These studies should help clarify the physi-
all-frans-ROL + (RISH8 4 + . . . . . . .
(R)8 + AGN193618 : ological function of RetSat as its expression in adipose tissue would
(518 + result in conversion of an inhibitor of adipose differentiation, all-
Figure 2. (A,B) Stereospecificity of RAR activation byRJ- and §)-13.- transretinol, into a much weaker inhibitor of differentiation, that

14-dihydroretinoids. Activation of RAR by enantiomers &for 9 was s (R).8. Our findings are also relevant to understanding the
evaluated by assaying the level gfgalactosidase whose expression is . ; . . .
interaction of RAR with chiral agonists.

controlled by a retinoic acid response element. (C,D) Effect of enantiomers

of 8 (1 uM final concentration) on adipocyte differentiation (left panels). .
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a-trifluoromethylphenylacetyl (MTPA) chloride to generate the
MTPA esters. Following separation of the MTPA esters3dfy
normal phase HPLC we found that the MTPA ester of purified
endogenous$ co-migrates with the MTPA ester oRJ-8 but not
with the MTPA ester of $-8 (Figure S-2).
Previous studies have shown that a racemic mixture of compound
9 can activate RAR but not RXRIn this study we investigated
the activation of RAR by the enantiomers ®fwith a cell-based
RAR transactivation assaywe found that §-9 is more potent in References
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Supporting Information Available: Experimental procedures,
analysis of the stereospecificity of zebrafish RetSat, chiral separation
of (R)- and §)-8 after derivatization with MTPA, preparation oR)-
and ©-8, chromatographic separation and CD analysisR)f @nd
(9-7, CD analysis of R)- and ©-8, structural modeling ofR)- and
(9-9 inside RARy. This material is available free of charge via the
Internet at http://pubs.acs.org.
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